Local newforms for the general linear groups over a non-archimedean local field

نویسندگان

چکیده

Abstract In [14], Jacquet–Piatetskii-Shapiro–Shalika defined a family of compact open subgroups p -adic general linear groups indexed by nonnegative integers and established the theory local newforms for irreducible generic representations. this paper, we extend their results to all To do this, define new certain tuples integers. For proof, introduce Rankin–Selberg integrals Speh

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remark on Representation Theory of General Linear Groups over a Non-archimedean Local Division Algebra

In this paper we give a simple (local) proof of two principal results about irreducible tempered representations of general linear groups over a non-archimedean local division algebra A. We give a proof of the parameterization of the irreducible square integrable representations of these groups by segments of cuspidal representations, and a proof of the irreducibility of the tempered parabolic ...

متن کامل

On the Classification of Rank 1 Groups over Non-archimedean Local Fields

We outline the classification of K-rank 1 groups over non-archimedean local fields K up to strict isogeny, as in [Ti1] and [Ti2]. We outline the classification of absolutely simple algebraic groups over non-archimedean local fields, up to strict isogeny. This is classical, and accounts of it have been written by Tits ([Ti1], [Ti2]) and Satake ([Sa]). Tits compiled tables of ‘admissible indices’...

متن کامل

ON NILPOTENT ORBITS OF SLn AND Sp2n OVER A LOCAL NON-ARCHIMEDEAN FIELD

We relate the partition-type parametrization of rational (arithmetic) nilpotent adjoint orbits of the classical groups SLn and Sp2n over local non-Archimedean fields with a parametrization, introduced by DeBacker in 2002, which uses the associated Bruhat-Tits building to relate the question to one over the residue field.

متن کامل

Character Sheaves of Algebraic Groups Defined over Non-archimedean Local Fields

This paper concerns character sheaves of connected reductive algebraic groups defined over non-Archimedean local fields and their relation with characters of smooth representations. Although character sheaves were devised with characters of representations of finite groups of Lie type in mind, character sheaves are perfectly well defined for reductive algebraic groups over any algebraically clo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum of Mathematics, Pi

سال: 2022

ISSN: ['2050-5086']

DOI: https://doi.org/10.1017/fmp.2022.17